Role of charge properties of bacterial envelope in bactericidal action of human group IIA phospholipase A2 against Staphylococcus aureus.

نویسندگان

  • Tomaz Koprivnjak
  • Andreas Peschel
  • Michael H Gelb
  • Ning S Liang
  • Jerrold P Weiss
چکیده

Mammalian Group IIA phospholipases A(2) (PLA(2)) potently kill Staphylococcus aureus. Highly cationic properties of these PLA(2) are important for Ca(2+)-independent binding and cell wall penetration, prerequisites for Ca(2+)-dependent degradation of membrane phospholipids and bacterial killing. To further delineate charge properties of the bacterial envelope important in Group IIA PLA(2) action against S. aureus, we examined the effects of mutations that prevent specific modifications of cell wall (dltA) and cell membrane (mprF) polyanions. In comparison to the parent strain, isogenic dltA(-) bacteria are approximately 30-100x more sensitive to PLA(2), whereas mprF(-) bacteria are <3-fold more sensitive. Differences in PLA(2) sensitivity of intact bacteria reflect differences in cell wall, not cell membrane, properties since protoplasts from all three strains are equally sensitive to PLA(2). A diminished positive charge in PLA(2) reduces PLA(2) binding and antibacterial activity. In contrast, diminished cell wall negative charge by substitution of (lipo)teichoic acids with d-alanine reduces antibacterial activity of bound PLA(2), but not initial PLA(2) binding. Therefore, the potent antistaphylococcal activity of Group IIA PLA(2) depends on cationic properties of the enzyme that promote binding to the cell wall, and polyanionic properties of cell wall (lipo)teichoic acids that promote attack of membrane phospholipids by bound PLA(2).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bactericidal Properties of Human and Murine Groups

Group IIA secreted phospholipase A2 (sPLA2) is known to display potent Gram-positive bactericidal activity in vitro and in vivo. We have analyzed the bactericidal activity of the full set of recombinant murine and human groups I, II, V, X, and XII sPLA2s on Listeria monocytogenes, Staphylococcus aureus, and Escherichia coli. The rank order potency among human sPLA2s against Gram-positive bacter...

متن کامل

Cell-wall determinants of the bactericidal action of group IIA phospholipase A2 against Gram-positive bacteria.

We have shown previously that a group IIA phospholipase A2 (PLA2) is responsible for the potent bactericidal activity of inflammatory fluids against many Gram-positive bacteria. To exert its antibacterial activity, this PLA2 must first bind and traverse the bacterial cell wall to produce the extensive degradation of membrane phospholipids (PL) required for bacterial killing. In this study, we h...

متن کامل

Bactericidal properties of human and murine groups I, II, V, X, and XII secreted phospholipases A(2).

Group IIA secreted phospholipase A(2) (sPLA2) is known to display potent Gram-positive bactericidal activity in vitro and in vivo. We have analyzed the bactericidal activity of the full set of recombinant murine and human groups I, II, V, X, and XII sPLA2s on Listeria monocytogenes, Staphylococcus aureus, and Escherichia coli. The rank order potency among human sPLA2s against Gram-positive bact...

متن کامل

The antibacterial properties of secreted phospholipases A2: a major physiological role for the group IIA enzyme that depends on the very high pI of the enzyme to allow penetration of the bacterial cell wall.

The antibacterial properties of human group IIA secreted phospholipase A(2) against Gram-positive bacteria as a result of membrane hydrolysis have been reported. Using Micrococcus luteus as a model system, we demonstrate the very high specificity of this human enzyme for such hydrolysis compared with the group IB, IIE, IIF, V, and X human secreted phospholipase A(2)s. A unique feature of the gr...

متن کامل

Staphylococcus aureus Adenosine Inhibits sPLA2-IIA-Mediated Host Killing in the Airways.

Staphylococcus aureus is a common cause of bacterial infections in respiratory diseases. It secretes molecules to dampen host immunity, and the recently identified adenosine is one of these molecules. The type IIA secretory phospholipase A2 (sPLA2-IIA) is a host protein endowed with antibacterial properties, especially against Gram-positive bacteria such as S. aureus. However, the role of adeno...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 277 49  شماره 

صفحات  -

تاریخ انتشار 2002